(a) Sketch line L.

(b) Calculate the gradient of line L.
(b)
(c) Line M is parallel to line L and passes through the point $(0,6)$.

Write down the equation of line M.
\qquad
(c)
(d) Line N has the equation $y=2 x-3$.

Is line N

- parallel to line L or
- perpendicular to line L or
- neither parallel nor perpendicular to line L ?

Justify your choice.

2 A straight line has gradient 6 and passes through the point $(0,-5)$.
Write down the equation of the line.

3 (a The sketches of three different straight line graphs are shown below.
Write the correct equation under each sketch. Choose from this list.

$$
\begin{array}{l|l|l|l|l}
y=\frac{1}{2} x+5 & y=-3 x+5 & y=x^{2}+5 & y=x-5 & y=-3 x-5
\end{array}
$$

(b) A line, L, is perpendicular to the line $y=2 x+6$.
L goes through the point $(0,3)$.
Find the equation of the line L.
(b)

4 A line, L, has equation $y=4 x-5$.
(a) Write down the gradient of line L.
\qquad
(b) What are the coordinates of the point where line L crosses the y-axis?
(b) (..........................,) [1]
(c) Write down the equation of the line parallel to line L that passes through $(0,0)$.
(c) ...
(d) Explain how you can tell that the line $y=\frac{-1}{5} x-5$ is not perpendicular to line L.
\qquad
\qquad

5 This graph shows how much a gardener charges for jobs taking different lengths of time.
J is the charge, in $£$, for a job and t is the number of hours the job takes.
For a job that lasts 3 hours, the charge is $£ 70$.
For a job that lasts 8 hours, the charge is $£ 145$.

(a) Find the gradient of the line.
(a)
(b) Work out the equation of the line to give a formula for J in terms of t.

6 Wibke buys satsumas from the market each week.
She keeps a record of how many satsumas she gets and how much they cost her.
She plots this information on a grid.

(a) Draw a line of best fit.
(b) Calculate the gradient of your line.

Give your answer to the nearest whole number.
(b)
(c) What information about satsumas does the gradient represent?
(c)
(d) Write down the equation of your line in terms of y and x.
(d)

7 (a) Draw the straight line through $(0,8)$ and $(12,0)$.

(b) Work out the gradient of your line.

Give your answer as a fraction in its simplest form.
(b)
(c) Write down the equation of your line in the form $y=m x+c$.
(c)
(d) Work out the gradient of a line perpendicular to your line.
(d)

8 Harpreet is doing an experiment.
She attaches different weights to the end of a spring and then measures the length of the spring.

She records the length, $L \mathrm{~cm}$, of the spring for each weight, $W \mathrm{~g}$.

Her results are given in the table.

W	50	80	120	200	260
L	11	11.6	12.4	14	15.2

(a) Use these values to draw the straight line graph of L against W.

(b) How long was the spring before Harpreet attached any weight to it?
(b) cm [1]
(c) Calculate the gradient of the graph in part (a).
\qquad
(c)
(d) Write down the equation of your graph in the form $L=m W+c$.
(d)
(e) Harpreet says that she can use the equation in part (d) to calculate the length of the spring if she attaches a 5 kg weight to it.

Explain why she may be wrong.
\qquad
\qquad
\qquad

9 (a) Find the coordinates of the midpoint of the line joining the points $(5,2)$ and $(-3,7)$.
(a)
[2]
(b) (i) For $d=6 t^{2}+4$, find the value of d when $t=-3$.
(b)(i)
(ii) Rearrange this formula to make t the subject.

$$
d=6 t^{2}+4
$$

(c) Write a number in each box so that the following is an identity.

$$
\begin{equation*}
4 x-3+6(x-5) \equiv 7 x-1+\square x-\square \tag{2}
\end{equation*}
$$

(d) You are given that $f(x)=5-2 x$.
(i) Find x when $\mathrm{f}(x)=0$.
\qquad
(d)(i)
(ii) Find $\mathrm{f}(t+4)$.

Express your answer in the form $a+b t$.

